Nanostructures and Organometallic Chemistry

Presentation of the Nanostructures and Organometallic Chemistry group

Our activities concern the synthesis, characterization and exploitation of the properties of nanoparticles and their assemblies. The synthesis methods that we develop (in solution and under mild conditions) allow the development of inorganic, hybrid and / or multifunctional complex nano-objects. We are particularly interested in the control of growth, composition and surface chemistry in order to control the chemical (catalysis) and physical properties (magnetism, optics, electronics) of our nanoparticles. This fundamental research is accompanied by important developments in various application domains (oncology, microelectronics, energy and catalysis) and contributes to answering major current scientific and societal issues such as the fight against cancer, the development of materials more respectful of the environment, the CO2 conversion or energy storage.

Highlights

– Coulomb blocking in Pt assemblies. We have shown that the use of ultra-small nanoparticles allows the observation of Coulomb blockade at room temperature and thus, the modulation of charge transport in assemblies of nanoparticles by their size, their distance and the dielectric constant of the ligands used. This approach is a first step towards understanding the mechanisms involved in molecular electronics. (Collaboration with Nanomag and MPC groups).

– CH activation. We have demonstrated (i) the catalytic activity of NPs for chemo- and enantioselective H / D exchange on molecules of biological interest and biomolecules (amino acids, peptides, nucleic acids, oligonucleotides, etc.). and (ii) the implication of an original activation mechanism involving two adjacent ruthenium centers. (Collaboration with the MPC group).

– Growth and catalytic properties. A method for Co nanorods growth on crystallographically oriented supports developed for magnetic recording, was applied for directly growing Co nanowires on Cu and Ni metal foams. The very good performances of these monolithic catalysts in the Fischer-Tropsch reaction make it possible to envisage the direct growth of nanowires inside the metal channels of microreactors for embedded systems. (Collaboration with LCC and IFP-EN).

– Surface chemistry and interfaces in InP semiconductor nanocrystals: growth and optical properties. By a detailed description of the core / ligand and core / shell interfaces by IR, XPS and NMR, we have succeeded in identifying the presence and the role of the surface oxide of QDs on their optical properties. Working on precursors then allowed the development of oxidation-free syntheses, paving the way for control over an unprecedented range of sizes. (Collaboration with the Opto team.)

– Integrated micro-magnets. A new submillimeter magnet manufacturing process has been developed in the framework of a close collaboration between the LPCNO and LAAS. By playing on the directed assembly by magnetophoresis of cobalt nanorods on a substrate previously structured by electrochemistry techniques, it was possible to obtain individual magnets and sub-millimetric magnet networks with planar or perpendicular magnetization. These magnets are very powerful, they allowed the actuation of a resonant MEMS device. This work led to the filing of a patent and the obtaining of two projects (ANR, pre-maturation of the Occitanie region).

– Gold nanowires. The atomic structure of ultrafine gold nanowires (dm <2 nm) synthesized by reduction of the HAuCl4 / oleylamine complex in hexane was studied by high energy X-ray diffraction (HE-XRD) in-situ in their growth environment. The analysis of the pair distribution function (PDF) in collaboration with V. Petkov (Central Michigan University) showed that the nanowires do not crystallize in the CFC structure expected for gold but that they adopt a structure of tetrahedrally close packed (tcp) type analogous to the so-called Frank-Kasper phases (F-K) with a structural model close to the α-Mn phase (ACS Nano 2018). We have proposed that the formation of such an atomic arrangement is the result of a compromise between the search for a maximum atomic compactness and the confinement of the metal in a cylinder whose radius is about six times the atomic radius of gold.

Collaborations

Toulouse
— CEMES, UPR 8011,
Group “Interférométrie, In situ et Instrumentation pour la Microscopie Electronique”
Group “Nano-Optique et Nanomatériaux pour l’Optique”
—CIRIMAT, CNRS-UPS UMR 5085,
Group “Revêtements et Traitements de Surface”
Group “Physiques des Polymères”

— IMRCP, CNRS-UPS, UMR 5623,
Group “Interfaces Dynamiques et Assemblages Stimulables”

— LAAS-CNRS, UPR 8001
Group “Microsystèmes électromécaniques”

— LCC-CNRS UPR 8241
Group “Matériaux moléculaires commutables”
Group “Métaux en biologie et chimie médicinale”
Group “Catalyse et Chimie Fine”

— LGC, UMR 5503,
Department “Génie des Interfaces et Milieux Divisés”

— LHFA – UMR 5069,
Group “Chimie Organique et Inorganique des Hétéroéléments”

— LNCMI-CNRS UPR 3228,
Group “Nano-objets et nano-structures semiconductrices”
France
— CEA Grenoble

— Centre RAPSODEE – Ecole des Mines d’Albi, CNRS, UMR 5302

— GREMAN, Groupe de Recherche en Matériaux, Microélectronique, Acoustique et Nanotechnologies, Université de Tours

— IFP Energies Nouvelles, Catalysis and Separation Division, Rueil-Malmaison

— Institut Néel, équipe Micro et Nanomagnétisme, Grenoble

— IPREM-ECP, Université de Pau, CNRS UMR 5254

— IPCM, Université Pierre et Marie Curie Paris, UMR 8232

— IPCMS – Université de Strasbourg
Département Surfaces et Interfaces,
Département de Chimie et des Matériaux Inorganiques

— ISCR, Université de Rennes, UMR 6226

— ITODYS, Université Paris Diderot, UMR CNRS 7086

— Laboratoire Léon Brillouin, CEA/CNRS UMR 12, Centre d’Etudes de Saclay

— Laboratoire de Physique des Solides, UMR 8502, Université Paris Sud

— Laboratoire des Sciences des Procédés et des Matériaux, Institut Galilée, UPR CNRS 9001, Université Paris 13

— Laboratoire de Chimie, ENS Lyon

— Laboratoire PROMES, CNRS UPR8521

— LCPO, Université de Bordeaux, UMR 5629

— LIPN, Université Paris 13, UMR 7030

— Matériaux Interface Électrochimie, LEPMI, Grenoble

— ST Microelectronics, Tours
International
— R. Arenal, University of Zaragoza, IUI of Nanoscience of Aragon, Spain

— S. Bals, Electron Microscopy for Materials Science, University of Antwerp, Belgium

— A. Ben Ali, L. Ben Tahar, Faculté des Sciences de Bizerte, Tunisia

— H. Garcia, Technical University of Valencia, Institute of Chemical Technology, Valencia, Spain

— M. Grünwald, University of Utah, USA

— O. Gutfleisch, Institut für Materialwissenschaft, TU Darmstadt, Germany

— T. Gutmann / Technische Universität Darmstadt, Germany

— Z. Hens, Department of Inorganic and Physical Chemistry, Ghent University, Belgium

— Z. Jihua, Lanzhou University, China

— V. Y. Lee, University of Tsukuba, Japan

— A. Lopez-Ortega, University of Castilla-La Mancha, Ciudad Real, Spain

— C. Magen, Université de Zaragoza

— J. Miller, Chemical Sciences and Engineering Division, Argonne

— National Laboratory, Illinois, and School of Chemical Engineering, Purdue University, Indiana, USA

— M. Monge, Departamento de Química, Universidad de La Rioja, Spain

— I. Panagiotopoulos, University of Ioannina, Greece

— W. Parak, Philipps-University of Marburg, Germany and Biofunctional Nanomaterials Unit at CIC biomaGUNE, San Sebastian, Spain

— V. Petkov, Central Michigan University, Department of Physics, USA Ramos-Ortiz, Photonics Department of the Centro de Investigaciones en Óptica, León, Mexico

— M. Scheer, Institut für Anorganische Chemie, University of Regensburg, Germany

— J. Schotter, Molecular Diagnostics Center for Health & Bioresources, Austrian Institute of Technology Gmb, Vienna Austria

— G. Shafeev, General Physics Institute of the Russian Academy of Sciences, Moscow, Russia

— R. D. Tilley, University of New South Wales, Sydney, Australie

— M. Vazquez, Instituto de Ciencia de Materiales de Madrid, CSIC, Espagne

— J. Watkins, University of Massachussetts, Amherst, USA