Laboratoire de Physique et Chimie des Nano-objets

Institut National des Sciences Appliquées
135 avenue de Rangueil, 31077 TOULOUSE CEDEX 4 - FRANCE
Tél : 00 33 05 61 55 96 45 | Fax : (+33) (0)5 61 55 96 97



Choose your site's language

          Version Française           English Version


On this website

Home page > LPCNO > Seminars > 2015 > Recent Developments in lanthanoid pseudo-Grignard reagent chemistry

Recent Developments in lanthanoid pseudo-Grignard reagent chemistry

Date : 22/01/2015 à 14:00

Titre : Recent Developments in lanthanoid pseudo-Grignard reagent chemistry.

Intervenant : Peter Junk

Provenance : School of Pharmacy & Molecular Sciences, James Cook University Townsville, Qld, 4811, Australia

Salle : Salle de Séminaire - LPCNO

Résumé: We have progressed metal based syntheses using rare earth metals considerably over the past several years. Organo-mercury and -thallium reagents have been extremely versatile reagents in redox transmetallation (equation 1) while the mercury reagents have also found great utility in the more convenient redox transmetallation/protolysis reactions (equation 2).[1] We have now extended this rare earth chemistry to the use of less toxic reagents such as RSnMe3,[2], BiPh3,[3] and most recently using pseudo-Grignard type chemistry[4] (equation 3) and use of I2 to activate the metal (equation 4).[5]

In lanthanoid pseudo-Grignard chemistry, we have been able to use these reagents in protolysis reactions to deliver heteroleptic iodo(metalorganic)lanthanoid species in good yield,[4] despite previous reports of the mixed oxidation state for PhLnI (Ln = Eu, Yb).[5] The species obtained our attempts to crystallise “PhYbI(thf)n” complexes will be presented.

We have recently shown that bulk lanthanoid metal can be activated by a few % of iodine crystals in the presence of a protic ligand to produce metal-organic compounds (equation 4). In this presentation, the new directions of the project will be discussed along with the most recent exciting results.

RE + MLn → RE(L)n + M↓ (RE = rare earth; M = Hg, Tl, n = 2,3) (1)
RE + ML’n + nLH → RE(L)n + M↓ + nL’H (2)
“RREI(solv)n” + LH → [RE(L)I(solv)4] + RH (3)
thf or dme
RE(I2) + nHL → [RE(L)n(solv)m] + n/2H2 (n = 2, 3) (4)

[1] G.B. Deacon, G.B. et al., J. Organomet. Chem., 2002, 647, 50.

[2] Beaini, S.; Deacon, G.B.; Hilder, M.; Junk, P.C.; Turner, D.R.; Eur. J. Inorg. Chem., 2006, 3434.

[3] Gillett-Kunnath, M.M.; MacLellan, J.G.; Forsyth, C.M.; Andrews, P.C.; Deacon, G.B.; Ruhlandt-Senge, K.; Chem. Commun., 2008, 4490.

[4] M Wiecko, GB Deacon and PC Junk, Chem. Commun., 46 5076 (2010).

[5] Evans, D.F. et al., J. Chem. Soc. D., 1970, 244 ; J. Chem. Soc. A., 1971, 1931.